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Abstract

Diversification is the typical investment strategy of risk-averse agents. How-
ever, non-diversified positions that allocate all resources to a single asset, state of
the world or revenue stream are common too. We show that whenever finitely
many non-diversified demands under uncertainty are compatible with risk-averse
subjective expected utility maximization under strictly positive beliefs, they are
also rationalizable under the same beliefs by many qualitatively distinct risk-averse
as well as risk-neutral and risk-seeking preferences.
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“But the wise man saith,
‘Put all your eggs in the one basket and

- WATCH THAT BASKET’.”
Mark Twain1

“Diversification is protection against ignorance,
but if you don’t feel ignorant,

the need for it goes down drastically.”
Warren Buffett2

1 Introduction

Risk-averse decision makers in real-world and experimental markets typically allocate
their available funds or revenue streams in ways that exhibit diversification. Yet at the
same time it is not uncommon for individuals operating in such environments to choose
non-diversified portfolios that allocate all resources to a single asset or state of the world.3

Considering the intuitive link between risk aversion and diversification,4 the first ques-
tion that arises naturally is whether agents who have been observed to make such non-
diversified choices can also be portrayed as risk-averse subjective expected utility (SEU;
Savage, 1954; Echenique and Saito, 2015; Pollison, Quah and Renou, 2020) maximizers
under some beliefs and tastes. The answer to this question is positive and implicitly
follows from the analysis of Inada (1963). In particular, such behaviour is compatible
with a risk-averse SEU agent, but only if her marginal utility is bounded above at all
non-negative wealth levels; hence, if the respective Inada (1963) condition on marginal
utility is violated.

In light of this fact then, we ask: What is it possible for the analyst to infer from
a non-diversifying SEU agent’s demand under uncertainty about their possible attitudes
toward risk? We answer this question by showing that if a finite dataset consisting
of non-diversified positions is compatible with strictly risk-averse SEU under some full-
support beliefs, then there is in fact a very general class of preferences over wealth that
feature bounded marginal utility and also rationalize this dataset under the same beliefs.
In particular, we show that such a simultaneous rationalization is achievable with risk-
neutral, risk-seeking, constant, as well as increasing absolute risk aversion –although not
constant relative risk aversion– preferences. Thus, when non-diversified choice behavior
is SEU-rationalizable by some strictly concave utility function and full-support beliefs,

1Source: Pudd’nhead Wilson, Charles L. Webster & Co, 1894.
2Source: Warren Buffett: The $59 Billion Philanthropist, Forbes Media, 2018.
3From the 207 experimental subjects in Halevy, Persitz and Zrill (2018), for example, 45% made such

a non-diversified demand over Arrow-Debreu securities at least once, 11% did so in at least half of their
22 decisions, while the overall rate of such behavior was 16%. For the 93 subjects in Choi, Fisman,
Gale and Kariv (2007) these figures were similar at 51%, 8.6% and 11%, respectively, even though these
subjects made 50 decisions instead (more details are available in our online supplementary appendix).
For a theoretical account on how investing in non-diversified portfolios could be observed in the presence
of financial complexity see Galanis (2018).

4For example, because firm CEOs are often considered averse to non-diversified revenue streams,
some firm boards provide more “risk-taking incentives” in the CEOs’ compensation packages “to offset
their risk of non-diversified revenue streams, thereby preventing excessive managerial conservatism at the
expense of value maximization” (Chen, Su, Tian and Xu, 2022).
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there is a precise sense in which this behavior is largely uninformative about the decision
maker’s risk attitudes conditional on those beliefs.

Although perhaps seemingly paradoxical, the result is intuitive. The main insight
is that rationalization via a strictly concave utility function implies that the chosen
asset/state of the world uniquely maximizes the probability/price ratio. This unique
maximization in turn implies that the corresponding risk-neutral investor with the same
subjective probabilities will have the same demand. Our extension to the other families
results from an approximation argument, as any member of this class can approximate a
linear preference on a bounded set.

2 Analysis

Ω := {ω1, . . . , ωn} is a finite set of states, with generic element ω ∈ Ω, and π is a
probability measure over Ω. D = {(pi, xi)}ki=1 is a finite dataset of prices and asset
demands, where pi, xi ∈ Rn

+ and pi ≫ 0 for all i ≤ k.5 We will refer to any xi in D as a
non-diversified demand if there exists ω ∈ Ω for which xi

ω > 0 and xi
ω′ = 0 for all ω′ ̸= ω.

Definition 1. A dataset D = {(pi, xi)}ki=1 is rationalizable by subjective expected utility
(SEU-rationalizable) if there is a probability measure π over Ω and an increasing function
u : R → R such that, for all i ≤ k,

Eπu(x
i
ω) ≥ Eπu(xω) for all x ∈ Rn

+ that satisfies pi · x ≤ pi · xi

Remark 1. If an SEU-rationalizable dataset contains a non-diversified demand, then it is
not rationalizable by a Constant Relative Risk Aversion (CRRA) utility function defined
by u(x) := xα for some α ∈ (0, 1).

This claim implicitly follows from Inada (1963) and generalizes to any class of utility
functions with unbounded marginal utility at zero wealth.

We now recall that for any function u : R → R, a supergradient at a point x is an
element y ∈ R for which

u(x) ≤ u(x) + y(x− x)

holds for all x ∈ R. If a point has a single supergradient, then that supergradient is its
derivative. The superdifferential at x is denoted by ∂u(x) and consists of all supergradi-
ents at x.

The next definition introduces the class of models that we take interest in. We en-
vision a model as a class of utility functions which is “closed” under certain operations.
Importantly, this class need not be globally increasing in wealth: our first requirement is
only that there exists a function in this class which is strictly increasing in a neighborhood
of zero (the relevance of this will be shown below). Our second requirement is that this
neighborhood can be made arbitrarily large.

Definition 2. A collection U of concave and continuous functions from R+ to R is
scalable if it has the following properties:

5x ≫ y means that xω > yω for all ω ∈ Ω.
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1. There is u ∈ U for which there is a supergradient u′(0) at 0, so that for all x ∈ R,
u(x) ≤ u(0) + u′(0)x; further, all supergradients of u at 0 are strictly positive.

2. For all κ ∈ (0, 1] and all v ∈ U , vκ defined as vκ(x) := v(κx) for all x ∈ R satisfies
vκ ∈ U .

Remark 2. As supergradients are real-valued, the first part of Definition 2 implies that
the relevant u ∈ U must satisfy u′(0) < ∞, thereby satisfying the premise of Remark 1.

Proposition 1. Suppose that a dataset D = {(xi, pi)}ki=1 is SEU-rationalizable by a
strictly concave, strictly increasing utility index and a full-support probability measure π,
and that each xi is a non-diversified demand. Then, for any scalable family of concave
and continuous utility functions U there is u ∈ U such that u is an SEU rationalization
of the dataset under π.

Proof. Let v be the utility index rationalizing the data. Without loss, we may assume
that v(0) = 0. Let xi be such that coordinate xi

ωi > 0, and all remaining coordinates
are zero. Slater’s condition is satisfied here, so by Theorems 28.2 and 28.3 of Rockafellar
(1970), this implies that there is a supergradient yiω of v for each ω ̸= ωi at 0 and a
supergradient yiωi at xi

ωi , and a multiplier λi > 0 for which

π(ω)yiω − λipi(ω) ≤ π(ωi)yiωi − λipi(ωi) = 0.

[The fact that supergradients are additive follows from Theorem 23.8 in Rockafellar
(1970).] Each yiω > 0 as v is strictly increasing. We may conclude then that for all
ω ̸= ωi, λipi(ω) ≥ π(ω)yiω and that λipi(ωi) = π(ωi)yiωi . So

pi(ωi)

pi(ω)
≤

yiωiπ(ωi)

yiωπ(ω)
<

π(ωi)

π(ω)
, (1)

where the strict inequality follows from strict concavity of v and the fact that the su-
perdifferential is strictly decreasing.

Now, fix any u ∈ U with finite supergradient at 0, whose supergradients are all
strictly positive there. Without loss, suppose that u(0) = 0. Let u′(0) denote the
minimal such supergradient (the one with the smallest value); the set of supergradients
(the superdifferential) is well-known to be closed (see p. 215 in Rockafellar, 1970), so such
an element exists. Without loss assume u′(0) = 1 (this is possible because U is scalable).
If the superdifferential correspondence is constant and equal to u′(0), no more work is
needed (this means that u is a linear function). Otherwise, we claim that for any ϵ > 0,
there exists x∗ > 0 with a supergradient bounded below by 1 − ϵ. To see why, observe
that if xn → 0 strictly monotonically and yn ∈ ∂u(xn), then yn is weakly increasing and
thus has a limit; the limit must be a member of ∂u(0) by Theorem 24.4 of Rockafellar
(1970), and hence must be at least as large as 1 (as 1 was the minimal element of ∂u(0)).
Consequently there is xn > 0 small so that yn is a supergradient of u at xn and yn ≥ 1−ϵ,
which is what we wanted to show. Obviously, yn ≤ 1.

Now choose ϵ > 0 small so that, for all i, we have (1−ϵ)π(ωi)
π(ω)

> pi(ωi)
pi(ω)

; this can be

done by finiteness of the set of observations. Let x = maxi x
i
ωi be the maximal nonzero

consumed commodity; obviously x > 0. Let 0 < xϵ < x have a supergradient of at least
1− ϵ. Let α = xϵ

x
< 1, so that for all i, αxi

ωi < xϵ. Observe that uα(x) = u(xϵ).

3



Now, define u(x) = uα(x)
α

. By assumption, uα ∈ U , and since u is cardinally equivalent
to uα, they have the same optimizers in any constrained optimization problem.

Observe that 1 ∈ ∂u(0) and that there is a supergradient of u at xϵ at least as large
as 1− ϵ. Therefore for each i, u has a supergradient at xi

ωi at least as large as 1− ϵ, as
αxi

ωi < xϵ. Consequently, by letting ziωi be any member of the supergradient of xi
ωi at

least as large as 1− ϵ, we have

pi(ωi)

pi(ω)
<

ziωiπ(ωi)

π(ω)
.

Set λi =
π(ωi)zi

ωi

pi(ωi)
and observe that we then have π(ωi)ziωi − λipi(ωi) = 0 and π(ω) −

λipi(ω) < 0. Conclude again by Theorem 28.3 of Rockafellar (1970), using the fact that
1 is a supergradient of u at 0.

Proposition 1 can be extended to the risk-seeking case by adapting Definition 2.

Definition 3. A class U∗ of continuous, increasing and convex functions from R+ to R
is scalable if it has the following properties:

1. There is v ∈ U∗ with a positive subgradient at 0.

2. For all α ∈ (0, 1] and all v ∈ U∗, vα defined as vα(x) := v(αx) for all x ∈ R satisfies
vα ∈ U∗.

Proposition 2. Suppose that a dataset {(xi, pi)}ki=1 is SEU-rationalizable by a strictly
concave utility function and a full-support probability measure π, and that each xi is a non-
diversified demand. Then, for any scalable family of increasing, convex, and continuous
utility functions U∗ there is some u ∈ U∗ such that u is an SEU rationalization of the
dataset under π.

Proof. Observe that (1) implies π(ωi)
pi(ωi)

> π(ω)
pi(ω)

for any ω ̸= ωi. Consequently, the linear

utility given by v(x) =
∑

ω π(ω)x(ω) is maximized uniquely at xi on the budget {x :
pi · x ≤ pi · xi}.

The argument is roughly the same as the preceding one, so we only sketch the re-
maining. Choose α > 0 so that (a suitably normalized) u has a subgradient of 1 at 0, and
so that for a given ϵ > 0, there is a subgradient of 1 + ϵ

x
, where again x is the maximal

observed consumption bundle. Now choose ϵ > 0 so that

π(ωi)uα(x
i) = π(ωi)uα

(
1

pi(ωi)

)
≥ π(ωi)

pi(ωi)

>
π(ω)(1 + ϵ)

pi(ωi)

≥ π(ω)uα

(
1

pi(ωi)

)
.

Since a (continuous) convex function is always maximized at an extreme point, by Bauer’s
Maximum Principle (Theorem 7.69 in Aliprantis and Border, 2006), the result follows.
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We illustrate the economic relevance of these results with the following Corollary,
which lists several classes of scalable families of utility functions, including the quadratic
family, (iii.), which is strictly increasing only in a neighborhood of the origin.

Corollary. If the dataset D := {(xi, pi)}ki=1 is SEU-rationalizable by a strictly concave
and strictly increasing utility function under a full-support probability measure π and each
xi is non-diversified, then D is also SEU-rationalizable under π by a:

(i) uα
1 , for any α ∈ (0, 1), such that for some cα > 0, uα

1 (x) := (x+ cα)
α

(DARA6-risk-averse with positive fixed initial wealth);7

(ii) u2 such that, for some β > 0, u2(x) := 1− e−βx

(CARA-risk-averse);

(iii) u3 such that, for some λ > 0, u4(x) := x− λx2

(IARA-risk-averse/increasing in a neighborhood of 0);

(iv) u4 such that, for some γ > 0, u3(x) :=
x

1 + γx
(IARA-risk-averse/increasing in R+);

(v) Linear u;

(vi) Strictly convex v.

Proof. We apply Proposition 1 separately to the first four cases. It is immediate that
the last two satisfy the conditions of Proposition 2 too, and that many suitable classes
of functions can be constructed for the last case.
(i) Fix α ∈ (0, 1). Let U denote the set of all utility indices u for which there exists
κ > 0 such that u(x) = (1 + κx)α. Then it is obvious that U is scalable. Further, fixing
κ = 1, say, u(x) = (1 + x)α is concave and continuous, there is a supergradient at 0,
and all supergradients are strictly positive. By Proposition 1, there is κ > 0 for which
u(x) = (1+κx)α rationalizes the data. The result concludes by observing that this utility
index is cardinally equivalent to v(x) = (κ−1 + x)α, where we then set cα = κ−1.
(ii) Let U denote the set of functions u for which there exists β > 0 so that u(x) = 1−e−βx

and observe that this family is scalable.
(iii) Observe that the family U defined by u ∈ U if there exist θ > 0 and µ > 0 for
which u(x) = θx − µx2 is scalable. Finally, each such u ∈ U is cardinally equivalent to
v(x) = x− µ

θ
x2, from which the result follows.

(iv) Observe that the family U defined by u ∈ U if there exists β, γ > 0 for which u(x) =
βx

1 + γx
is scalable. Finally, each such u ∈ U is cardinally equivalent to v(x) =

x

1 + γx
.
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